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Abstract. A new characterization of self-organized criticality (SOC) states is developed by
using metric features of the configuration’s space. Quantities mainly referring to the partition
formalism, as mutual factorization, Shannon entropy and Rohlin distances with their distributions
and power spectra, are considered. Time series for these observables give account of geometrical
and dynamical complexity through the interdependence of fractality and flicker noise. For Bak–
Tang–Wiesenfeld and Manna automata, new indicators enforce previous results given by standard
parameters and allow a deeper insight into the structure of SOC configurations and their time
behaviour. Moreover, we obtain indications regarding a possible split in the universality class of
the two automata.

Much attention has been devoted in recent years to the characterization of the so-called ‘self-
organized criticality’ (SOC), in order to obtain clear criteria to classify systems such as sandpile
automata in the framework of geometro–dynamical complexity. We simply remind the reader
here that the critical state is an attractor lacking any characteristic time or length scale. Usual
descriptions refer to parameters such as the number of topplingss, the amplitude of avalanches
a and the avalanches’ lifetimeT [1–3]. These parameters, which will be precisely recalled
below, exhibit power law distributions, i.e., by adopting notations of [3]:

P(x) ∝ x−τx (1)

wherex may bes, a, T , andτx is the corresponding exponent used in classifying the model.
The suspicion that a strict interdependence of geometry and dynamics (fractality versus

flicker noise) is particularly relevant for these systems was raised from the very beginning
of studies on SOC [1]. Now, parameterss, a and T obviously depend on the evolving
configurations, but the geometrical peculiarity of the SOC regime remains implicit for them:
fractality, for instance, does not appear directly in the evolution of cluster shapes, but only
through the probability distributions (1). The approach we propose here explicitly refers to the
geometrical features of the SOC states in their relations to dynamics, by a suitable metrization
of the configuration’s sequence. In order to compare the evolving states, we need to introduce
a distance between configurations along the trajectory.

For cellular automata, or more generally for discrete systems whoseN sites assume
numerical values, there is a standard way to introduce a distance through the Hamming
functionalρ

H
, defined by

ρ
H
(a, b) = 1

N

N∑
i=1

|xa(i)− xb(i)| (2)
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wherexa(i) andxb(i) denote the values of the sitei in the configurationsa andb respectively.
The advantage of this distance, besides its simplicity, is that it does not care for lattice dimension
or symmetries. Actually, it could also be introduced on a graph. However, not only does
it require that the value’s range, i.e. the alphabet, is numerical, but it is also insensitive
to the configuration’s shape: the maximum, for instance, is reached for every couple of
complementary configurations, independently of their shapes. Moreover, it is not difficult
to provide examples of configurationsa, b, c . . . havingρ

H
(a, b) = ρ

H
(a, c) = · · · , but very

different value distributions. Consider, e.g., three configurations of a 4× 4 lattice:

a =


1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2

 b =


1 1 2 2
1 1 2 2
2 2 1 1
2 2 1 1

 c =


1 2 1 2
2 1 2 1
1 2 1 2
2 1 2 1

 . (3)

Clearly,ρ
H
(a, b) = ρ

H
(a, c) = ρ

H
(b, c) = 1

2. Thus, at least in principle, it seems that
the Hamming distance cannot describe the geometrical complexity of value distributions.

A complementary approach, therefore, should stress the metric role of cluster shapes
independently of the actual values (numerical or otherwise) on sites. This may be done using
the Rohlin distance (see, e.g., [4]), as proposed in [5,6] for general discretizable systems. This
distance has already been used to characterize the magnetic transition in automata with Q2R
or Metropolis evolution rules, simulating Ising systems in the microcanonical or canonical
descriptions respectively [6].

We summarize the formalism and the notation of [6], which immediately fit the needs of
every automaton on a square lattice.

Let a, b, c, etc be the states, or configurations, of a square latticeM of N = L×L sites,
where every site can assume values in an alphabetK: therefore, the configuration’s spaceS
isKN . Consider the dual latticeM ′: sites ofM are now the centres of squares. There is an
isomorphism betweenM andM ′. Since every site ofM is the centre of a square, and every
square is labelled by an alphabetic value, every configuration inM is also a configuration
of the dual lattice, and we may assume that the configurations’ space is the same. Then, the
Peierls–Griffith clusterization [7] consists in grouping together, in a single cluster, squares
with the same value inK which are connected by a continuous path. Therefore, every cluster
is a connected (but, in general, not simply connected) subset ofM ′. For every configuration,
these clusters define a finite partition ofM ′, i.e. an exhaustive collectionα of disjoints subsets
A1, A2, . . . , Am of M ′, calledatomsof α. A probability inM ′ is defined by assigning to
every atom a measure,µ(Ak), given by the number of squares in the corresponding cluster
divided byN . This procedure defines a map8 : S → Z, whereZ is the set of all the finite
measurable partitions ofM ′. Then, the Rohlin distance between two partitionsα andβ in Z
is the functional

ρ
R
(α, β) = H(α|β) +H(β|α) (4)

whereH(α|β) is the conditional Shannon entropy ofα with respect toβ. Note that, for
configurations in example (3), we have

ρ
R
(α, β) = log 2 ρ

R
(α, γ ) = 3 log 2 ρ

R
(β, γ ) = 2 log 2

where, of course,α = 8(a), β = 8(b), γ = 8(c).
In [6] there is a complete description of the ‘reduction process’

π : (α, β)→ (α′, β ′)

between two partitionsα, β, which defines a new coupleα′, β ′, where common factors (i.e.
subpartitions) have been eliminated as far as possible. A reduced couple(α′, β ′) is irreducible,
i.e.π2 = π : the reduction process is a projection on the set of irreducible couples.
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The subtle point in this process consists in properly defining the factorization of partitions.
Indeed, the whole procedure recalls the elimination of common factors in fractions, and reduced
couples are the equivalent of rational numbers. But, for partitions, there is not a uniquely
defined factorization in ‘prime factors’. The role of prime factors is played by dichotomic
(i.e. two-atom) subpartitions. For two-dimensional lattices, the correct dichotomic factors are
subpartitions defined by theexternalborder of every atom. It holds thatρ

R
(α, β) 6 ρ

R
(α′, β ′),

and the reduced distanceρ̂
R

is then defined as

ρ̂
R
(α, β) = ρ

R
(α′, β ′). (5)

Bothρ
R

andρ̂
R

give a quantitative estimate of the non-similarity betweenα andβ, or α′ and
β ′. The ‘amplification factor’A is defined as

A = ρ̂
R

ρ
R

= ρ
R
(α′, β ′)

ρ
R
(α, β)

(6)

where it is an index of theexact overlap of border paths of atoms in two partitions, and,
indirectly, of the local mobility of the clusters. The reduction process, based on the storage and
comparative analysis of all borders, requires a heavy computational charge. In the following,
couples of partitions will correspond to configurations in consecutive steps during the evolution
of the system.

Even if the method may be easily applied to every kind of two-dimensional system,
hereafter, to be more specific, we shall refer to sandpile automata, in particular to the Bak–
Tang–Wiesenfeld (BTW) and to the Manna models, (see, e.g., [1, 2]). We briefly recall the
rules:

• BTW model: every site(i, j) assumes integer values representing the heighthij of a
sandpile. Sites are increased by random addition of single grains. There is a critical
heighthc = 3, and whenhij > hc there is a distribution of sand grains from the site(i, j)
to its next neighbours〈ij〉, i.e.hij → hij − 4 andh〈ij〉 → h〈ij〉 + 1; this process is said to
be toppling;
• Manna model: the same as in BTW, except thathc = 1, and the toppling rules are
hij → hij − 2, and only two next neighbours (randomly selected) are increased by 1.

Of course, topplings may propagate until the system reaches a new stable state, and this
propagation is called ‘avalanche’. In both cases the random addition of sand grains is stopped
during the avalanche. An ‘internal step’ of the avalanche is the refreshing of the whole lattice
according to the rule when at least one site is greater thanhc. The standard parameters to
consider are the number of topplingss, the number of internal evolution stepsT , and the size
of the avalanche clustera. Borders are open, and may dissipate sand. In stable states, the only
ones considered in cluster formation, the alphabet for BTW isK = {0, 1, 2, 3} and for Manna
is K = {0, 1}. Indeed, the values over the critical heights appear only in the intermediate
phases of evolution, and do not influence the actual shapes of the atoms we shall consider.

Another interesting quantity is the mean steepnessv̄, defined by

v̄ = 1

N

L∑
ij=1

∑
〈ij〉

|hij − h〈ij〉|
4

. (7)

It is an index of smoothness, measured along the cluster borders.
The analysis will proceed in the following way: starting from an initial configurationa(0),

we consider the sequence{a(t)} of configurations taken at discrete timest . In correspondence
to the sequence{a(t)}, there is a partition sequence{α(t)}, whereα(t) = 8(a(t)). Discrete
times t are the beginning steps of avalanches (in other words,t is the order label of
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avalanches). The time discretization, depending on the avalanches’ lifetimeT , is therefore
highly dishomogeneous with respect to the ‘clock time’ defined by the evolution rules.
When necessary, we shall also consider single evolution steps (internal and/or external to
the avalanches) as given by the rules. For distances, it would have been natural to consider, as
relevant partitions, the first and the last ones of every avalanche: however, since the evolution
steps between two avalanches modify in most cases one or two sites, the difference with respect
to our choice is very small, and practically insignificant on the values of all time series.

In actual simulations, the length of these sequences (i.e. the number of avalanches) reaches
t = 100 000, with checks up tot = 200 000, forL = 50, 100, 200. We stress that these low
values ofL depend on the heavy computational charge due to the partitions handling, in
particular to the reduction process which requires the factorization of all couples of partitions.
The transient time necessary to pass from an initial random configuration to the stable SOC
state is around 1000 avalanches forL = 100. Our timet = 0 starts from the stabilization in
the SOC regime.

The time series or quantities we shall consider are as follows:

(1) {H(t)}, the entropy time series, whereH(t) = H(α(t));
(2) {ρ

R
(t)}, the Rohlin distances’ time seriesρ

R
(t) = ρ

R
(α(t + 1), α(t));

(3) {ρ̂
R
(t)}, the corresponding reduced distances;

(4) A(t), the amplification factor (6);
(5) {ρ

H
(t)}, the time series for the Hamming distances;

(6) {v̄(t)}, the mean steepness time seriesa(t).

We observe that, asN grows, the time series{v̄(t)} is smoothed for small avalanches, but the
appearance of longer and longer avalanches ensures the persistence of comparable maxima in
the peaks on larger timescales. Therefore, the limitN →∞ is not trivial.

The results are as follows:
(1) To check the correctness of our simulations, standard observablesa, s, T and related

quantities have been resumed, with the same values shown in literature [3,8];
(2) Rohlin and Hamming distances exhibit power law distributions, likewise standard

parameters (1), for both BTW and Manna automata:

P(ρ) ∝ ρ−η (8)

whereρ is in turnρ
H
, ρ

R
or ρ̂R (see figures 1 and 2). Actual values are shown in table 1. Note

that the characteristic exponents have different values for the two automata, with regards to
both the Rohlin and Hamming distances.

(3) Entropy and steepness do not exhibit any power law distribution. This is easy
to explain: entropy and steepness are global indicators of configuration complexity, and
their distributions simply exhibit values averaged over the whole trajectory, independently
of dynamical correlations (while, in contrast, correlations along the trajectory are important
for distances). EntropyH(t) oscillates around the mean value

H̄ = H̄ (N) = c logN (9)

wherec is 0.85 for BTW and 0.28 for Manna. The factor logN is typical of a ‘chaotic’
component, and it will be explained below. Indeed, it would be erased by normalization through
the maximal Shannon entropy, logN anyway. The difference in the proportionality factorc,
stresses some peculiarities of BTW and Manna configurations. To start with, according to the
four colours theorem, a two-value alphabet cannot produce all configurations, as a four-value
alphabet does. Therefore, at least in principle, Manna configurations are only a subset of BTW
configurations (actually, we did not check directly the effective relevance of this possibility).
This could be a source for greater complexity of the latter with respect to the former, coherent
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with the observed greater factorc in (9). For a deeper insight, we have explored the measure
distributions of clusters for every fixed value inK. It results that, for both automata, clusters of
value 0are notdistributed with a power law, but are mostly one-site islands (BTW) or few-site
islands (Manna), and they arerandomly distributed: their number is therefore proportional to
N . This explains both the logN divergence of entropy and the difference between the two
sandpiles. Once the 0-value clusters have been erased, for the Manna model there indeed
remain only clusters of value 1 (with a power law distribution); for the BTW model there
remain clusters of values 1, 2, 3 and they have power law distributions with different fractal
dimensions (multifractality). Observe that this is another multifractality with respect to the
one considered in [9].

(4) Since the values of observables are not constant for events with the sameT , it is
suitable to consider the valuesā, s̄, H̄ . . .averaged over all occurrences at fixedT . For standard
parameters, these expectation values have already been considered, e.g., by [10,11]. In figure 3,
we giveρ̄

R
for BTW and Manna. The linear growth is clear for the BTW data (power with

exponent 1± 0.01), while the overall growth of the Manna data presents a light concavity,
allowing for a more than algebraic growth. It is true that forT > 30 most of the data could also
be fitted by a line in the loglog scale (i.e. by a power with exponent>1, precisely 1.23±0.01): in
such case, the concavity should be interpreted as a small avalanche effect typical of the Manna
system. In our opinion, such splitting of functional dependence of the mean distance versus
T is an additional meaningful argument supporting the idea of a class distinction between the
two automata. A universality breaking given solely on the basis of table 1 would be less clear.
We stress thatall the values ofT , not only the greater ones, must be taken into consideration.
Indeed, since small avalanches remain statistically important in the limitN → ∞ (the limit
necessary to have indefinitely long avalanches) the possible settlement of the Manna curve
in a power law growth for greatT does not cancel out this initial difference. In any case, at
least the difference between exponents in the growth, a usual criterion to distinguish classes
of universality, seems to be reliable. In figure 4 analogous diagrams for theρ

H
distance give

the same results with a minor emphasis on the suspected concavity of the Manna curve.
(5) The reduction process proves extremely sensitive to the rules. The amplification

factors have also been averaged over all the occurrences at sameT . Clearly, since the region
not involved by the avalanche does not contribute to distances, the effective reduction has to
do only with the critical region. We see from figure 5 that:

• for BTW, a quantitatively relevant amplification takes place for allT : to have an idea,A
is three orders of magnitude greater then the corresponding amplification in the critical
phase of spin automata [6]. The atoms’ boundaries, therefore, are very easily recovered
by the internal dynamics of avalanches, also for greatT . After an initial peak, to be
attributed to the smallness of the avalanche region, there is a minimum, forT of the order
of 20: this is likely due to the fact that the reconstruction of borders requires sufficiently
long avalanches, and this minimum simply expresses the balance between deformed and
rebuilt borders. Experimentally it seems that there is a saturation of the reduction process
aroundT = 100. Of course, at greaterT the statistics is too poor to smooth down the
fluctuations;
• for Manna, the initial peak is comparable to the BTW peak, with a fast descent. ForT

greater than 20, the randomness of the rule makes the reconstruction of borders after the
avalanches extremely improbable. In this case, the amplification reduces to the order of
magnitude found in spin systems.

(6) Power spectra: all distances exhibit spectra of time series with rapidly decaying
correlations. The most interesting behaviours concern entropy and mean steepness: clearly,
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Table 1. Critical exponents for distance distributions.

Rule η
R

η̂
R

η
H

BTW 1.18± 0.02 1.24± 0.02 0.86± 0.03
Manna 1.44± 0.03 1.44± 0.03 1.49± 0.03

previous observation at point (3) above does not apply in this case, since in power spectra
the dynamical order of events is fundamental. For the BTW automaton the entropy spectrum
S
H
(ω)and the mean steepness spectrumS

v̄
(ω), are shown in figures 6 and 7 respectively (Manna

spectra are similar). Notwithstanding the dispersion at high frequencies, linear interpolations
performed via standard numerical routines give values for critical exponents which are robust
with respect to variations in the experiment parameters. Precisely, we obtain the exponent
γ
H
= 0.82± 0.05 for BTW andγ

H
= 0.84± 0.05 for Manna. As for the mean steepness, we

haveγ
v̄
= 0.75± 0.05 for BTW andγ

v̄
= 0.85± 0.05 for Manna. These differences do not

indicate a meaningful qualitative distinction between the two automata.
One could vary the experiments on the power spectra in two different ways:

(a) instead of instantaneous values of observables at the beginning of every avalanche,
consider the values averaged during the avalanche;

(b) conversely, consider the instantaneous values also at every step within the avalanches and
between them.

Actually, we have performed both these variations withL = 50, obtaining practically
identical results with respect to the standard experiments.

Conclusions

The last result for critical exponents from the power spectra of entropy and steepness (i.e.,
their independence of the timing in the sampling, or else of the local averaging during the
avalanches) is a strong indication about the special character of the SOC noise in its relation
to fractality: cluster complexity and local steepness indeed vary in such a way to pass through
the total length of avalanches as if it were a single evolution step; in addition, the averaging
along the avalanches does not destroy the fluctuations. In other words, zooming in on time
series by looking at intermediate evolution steps, gives new similar time series, etc.

Introducing the Hamming and Rohlin distances, we have remarked upon their
complementarity: the former refers to the local (site by site) difference of values and needs
a numerical (or metrizable) alphabet; the latter refers to the global cluster distribution and
it is indifferent to the nature of the alphabet (which could also consist of colours or letters),
exploiting only shapes and sizes of clusters. The relation of both to dynamics should, in
principle, point to different features. However, we did not, in fact, obtain qualitatively different
information fromρ

H
or ρ

R
. Such an experimental result has to be interpreted as an indication

that dynamics and geometry are interlaced in such a way that not only cluster variations imply
changes of local values, but also that local variations imply shape evolution (and this is not
necessarily true). Such a feature does not regard only sandpile dynamics, but it is true for
all rules in which there is an interdependence between evolution and cluster borders (e.g. in
Q2R spin system [6]). Of course, the Hamming distance cannot provide information about the
factorization of partitions, as the Rohlin distance does.

These features do not distinguish between BTW and Manna rules. As far as we know,
they may be considered as typical of SOC in itself.
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Figure 1. Distributions of Rohlin distances for BTW and Manna automata.
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Figure 2. Distributions of Hamming distances for BTW and Manna automata.
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Figure 7. Power spectrum of steepnessv̄ for BTW automaton.

Finally, stochasticity in Manna rule is likely to be responsible for its greater growth law
of a Rohlin distance at fixed lifetimeT (figure 3) and extremely low reduction with respect to
BTW (figure 5). All this shows that common features of SOC states may coexist with deeply
different properties in the time correlations of configurations. These findings provide strong
indication regarding a possible split of the universality class for the two automata, which was
not clear from previously considered parameters.
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